Coupling-Compensated 180° Phase Shift Coupled-Line Filters Terminated in Arbitrary Impedances

Hee-Ran Ahn, Joongjin Nam and Bumman Kim

Dept. of Electronic and Electrical Engineering POSTECH, Pohang Republic of Korea

Abstract—Coupled-line filters (CLFs) with a 180° phase shift are analyzed and coupling compensated design equations are derived. They can be applied for arbitrary termination impedances and arbitrary coupling coefficients. To verify the design equations reasonable, a microstrip CLF with a coupling coefficient of -7 dB is fabricated on a substrate \(e_r = 3.5, H = 30 \text{mil}, \tan \delta = 0.04 \) and tested for 100 \(\Omega \) and 70 \(\Omega \) termination impedances. The measured results show good agreement with the simulated ones.

Index Terms—Arbitrary termination impedances, Coupled-line filters, Impedance transformers with a 180° phase shift, Ring hybrids, Baluns.

I. INTRODUCTION

The coupled-line filters (CLFs) with a 180° phase shift have been applied for various microwave components: wideband ring hybrids [1]-[2], filters, baluns are several. A CLF with a 180° phase shift can be obtained by terminating two of four ports of a directional coupler in short. Therefore, for the analyses of the CLFs terminated in arbitrary impedances, any background of directional couplers for impedance transforming is needed. Since first directional coupler was reported in 1922 [3], numerous papers [4]-[10] described the theory and applications. However, they can be applied only for equal termination impedances. Very recently, design equations of the directional couplers for impedance transforming were first derived [11], [12] and will be used to derive the scattering parameters of the CLFs terminated in arbitrary impedances.

When the power is fed into a port of the CLF, a part of the excited power is transmitted and the remaining power coupled, and the transmitted power is again coupled into the other port by the short boundary condition adjacent the other port. The resulting power delivered to the other port is sum of the coupled and transmitted ones. Therefore, only when the coupled power is half, all the excited power at a port is transmitted into the other port. However, any CLF with a -3 dB coupling coefficient can not be realized with any microstrip technology [1].

In this paper, to realize the CLFs terminated in arbitrary impedances without any coupling problem, coupling compensated design equations of the CLFs are derived. Since they can chose the termination impedances arbitrarily, there are big advantages like other asymmetric passive components [13]-[16]. To verify the design equations reasonable, a microstrip CLF with a -7 dB coupling coefficient is fabricated and tested at a design center frequency of 2 GHz. The measured results show good agreement with the predicted ones.

II. ANALYSES

A CLF with a 180° phase shift and its equivalent circuit are depicted in Fig. 1 where \(Z_L \) and \(Z_r \) are arbitrary termination impedances and \(Z_m \) is an input impedance looking into the coupled transmission lines terminated in \(Z_L \).

![Diagram](attachment:image.png)

Fig. 1. A CLF with a 180° phase shift (a) A CLF with a 180° phase shift with power fed into port \(\Phi \). (b) Its equivalent circuit.
The admittance matrix of the CLF is derived by using boundary conditions from a directional coupler for impedance transforming [17] and it gives

\[
[y] = \begin{bmatrix}
- j \frac{Y_0 + Y_{0c}}{2} \cot \Theta & - j \frac{Y_0 - Y_{0c}}{2} \csc \Theta \\
- j \frac{Y_0 - Y_{0c}}{2} \csc \Theta & - j \frac{Y_0 + Y_{0c}}{2} \cot \Theta
\end{bmatrix}
\]

(1)

where

\[
S_{11} = \frac{(Y_0 + Y_{0c})^2 \cos^2 \Theta - (Y_0 - Y_{0c})^2 + 4 Y_L Y_c \sin^2 \Theta + j (Y_L - Y_c)(Y_0 + Y_{0c}) \sin 2\Theta}{(Y_0 + Y_{0c})^2 \cos^2 \Theta + (Y_0 - Y_{0c})^2 - 4 Y_L Y_c \sin^2 \Theta + j (Y_L + Y_c)(Y_0 + Y_{0c}) \sin 2\Theta},
\]

(3a)

\[
S_{22} = \frac{(Y_0 + Y_{0c})^2 \cos^2 \Theta - (Y_0 - Y_{0c})^2 + 4 Y_L Y_c \sin^2 \Theta - j (Y_L - Y_c)(Y_0 + Y_{0c}) \sin 2\Theta}{(Y_0 + Y_{0c})^2 \cos^2 \Theta + (Y_0 - Y_{0c})^2 - 4 Y_L Y_c \sin^2 \Theta - j (Y_L + Y_c)(Y_0 + Y_{0c}) \sin 2\Theta},
\]

(3b)

\[
S_{12} = \frac{- j 4 (Y_0 - Y_{0c}) Y_L Y_c \sin \Theta}{(Y_0 + Y_{0c})^2 \cos^2 \Theta + (Y_0 - Y_{0c})^2 - 4 Y_L Y_c \sin^2 \Theta + j (Y_L + Y_c)(Y_0 + Y_{0c}) \sin 2\Theta},
\]

(3c)

If the termination admittances \(Y_0 \) and \(Y_c \) are equal to each other, \(S_{11} \) is identical to \(S_{22} \). However, if \(Y_L \) and \(Y_c \) are different, \(S_{12} \) and \(S_{22} \) are equal in magnitudes but 180° out of phase. Based on the derived scattering parameters, frequency responses have been calculated as the coupling coefficients are varied. The calculation has been carried out by use of Matlab. Version 6. The calculated results are plotted in Fig. 2 where \(f / f_0 \) is frequencies normalized to a center frequency \(f_0 \), and return and insertion losses with the impedance transformation ratio \(R = 1.5 \) are in Fig. 2(a) and (b), respectively. Depending on the coupling coefficients, coupling characteristics are classified as critical coupling (\(C = -3 \text{dB} \)), over coupling (\(C < -3 \text{dB} \)) and under coupling (\(C > -3 \text{dB} \)). Figure 2 shows that perfect matching appears only with the critical coupling, and that ripples with no perfect matching exist in the over-coupling case. The excited power at port \(\Phi \) is transmitted into port \(\Psi \) in Fig. 1(a) and the amount of the transmitted power is dependent on the coupling structure. Therefore, the equivalent circuit can be suggested as a series resonant circuit [18] and the input impedance with \(\Theta = 90° \) in Fig. 1(a) is calculated as

\[
R = Z_r \left(\frac{1 - C^2}{C^2} \right),
\]

(4)

which also demonstrates that the value of \(R \) is \(Z_r \), only if \(C = 1/\sqrt{2} \) and agrees with the simulation results shown in Fig. 2. For the CLF with any coupling coefficient to be perfectly matched, the even- and odd-mode impedances should be compensated in a way that the value of \(R \) is always \(Z_r \), regardless of the coupling coefficients. The \(Z_r \) in (4) comes from the even- and odd-mode impedances in (2) and can be compensated to have a constant \(R \) value, regardless the coupling coefficients. The compensated even- and odd-mode impedances are

\[
Z_{0e-CF} = \sqrt{Z_r Z_L} \frac{C^2}{1 - C^2} \frac{1 + C}{1 - C},
\]

(5a)

\[
Z_{0o-CF} = \sqrt{Z_r Z_L} \frac{C^2}{1 - C^2} \frac{1 - C}{1 - C}.
\]

(5b)

Based on the design equations in (5), the even- and odd-mode impedances are calculated depending on the different coupling coefficients and written in Table I for \(Z_L = 100 \ \Omega, \ Z_r = 70 \ \Omega \). In the case of \(C = -3 \text{dB} \), the even- and odd-mode impedances are 202.8 \(\Omega \) and 34.68 \(\Omega \) and the even-mode impedance of 202.8 \(\Omega \) can not be realized with microstrip transmission lines.

<table>
<thead>
<tr>
<th>(C = -3 \text{dB})</th>
<th>(C = -5 \text{dB})</th>
<th>(C = -7 \text{dB})</th>
<th>(C = -8 \text{dB})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z_{0e-CF})</td>
<td>202.8 (\Omega)</td>
<td>107.5 (\Omega)</td>
<td>67.5 (\Omega)</td>
</tr>
<tr>
<td>(Z_{0o-CF})</td>
<td>34.68 (\Omega)</td>
<td>30.1 (\Omega)</td>
<td>23.8 (\Omega)</td>
</tr>
</tbody>
</table>
Fig. 3. Calculation results of scattering parameters with (2).

With the data given in Table I, three CLFs with each 180° phase shift have been simulated as the coupling coefficients are varied. The simulation results are plotted in Fig. 4 where all the CLFs are perfectly matched, regardless of the coupling coefficients and that more coupling powers result in more bandwidths.

III. MEASUREMENTS

To verify the derived design equations in (5), a microstrip CLF terminated in 100 Ω and 70 Ω has been fabricated on a substrate ($H = 30$ mil and $\varepsilon_r = 3.4$) and measured at a center frequency of 2 GHz. Figure 5 shows the microstrip CLF with $C = -7$ dB and $\$\$#17$ and $\$\$#27$ are the impedance transformers to transform 100 Ω and 70 Ω into 50 Ωs. In the case, $Z_{in} = 67.5$ Ω and $Z_{out} = 23.8$ Ω as written in Table I. The even-mode impedance can be realized without any problem but the odd-mode impedance is somewhat difficult because the substrate given has a low dielectric constant. Therefore, three-dimensional structure is needed to get the wanted odd-mode impedance as shown in Fig. 5(b). Figure 6 compares the measured results with the calculated ones and they are in good agreement.
IV. CONCLUSIONS

Coupled line filters (CLFs) with a 180° phase shift were analyzed and coupling compensated design equations derived. The design equations can be applied to both arbitrary termination impedances and arbitrary coupling coefficients. The CLFs can be used for wideband ring hybrids and baluns and any advantage to reduce total size of microwave integrated circuits can be gained like asymmetric branch-line hybrids, power dividers, impedance transformers, phase shifters and attenuators.

REFERENCES

